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Summary according to the four high-level functions they support.
. . . Finally, when asked to prioritize this flight-deck infor-
Automated systems on commercial aircraft flight

) ; . mation, it was discovered that there was both a high
decks have dramatically increased in number over theygqreq of consensus for the importance of the same infor-
past dec_:ade and pilots now regularly Interact a_nd sharenation across different flight situations and few individ-
tasks with these systems. Consequently, this incréaseq gitferences among pilots in their prioritizations.
interaction has led human factors researchers to focus
more attention on the pilot's cognitive processing of
flight-deck information and the pilot's overall mental
model of the information flow that occurs on the flight The increase of automation on modern commercial
deck. The cognitive activities of categorization and prior- gircraft has made it more challenging for flight-deck
itization particularly interest researchers because thesegjesigners to support the flight crew for two principal
activities are important and pervasive in managing andreasons.
processing flight-deck information.

Introduction

. o ' First, automation has shifted the emphasis on flight
~ The experiment reported herein investigated how crew tasks from physical actions to the cognitive pro-
pilots categorize and prioritize information typically cesses required to accomplish the tasks (Dornheim 1992;
available during flight. Fifty-two commercial airline Rjcks, Jonsson, and Rogers 1994; Ricks et al. 1991).
pilots participated in tasks that required them to provide Two examples are representative of this shift. A trans-
similarity ratings for pairs of flight-deck information and  continental flight can be completely programmed at the
then prioritize this information under two separate con- departure gate with the flight management computer
texts. Such results can be expressed with either spatial ofather than having the crew make sequential changes
clustering representations. For spatial representationswith the mode control panel as the flight progresses, or
the dimensions may be considered as representing cognhow almost never done, handflying the aircraft for the
tive factors that individuals use to process the informa- entire flight. On the McDonnell Douglas MD-11, recon-
tion. For clustering representations, the clusters intofiguration occurs for some failure states without any pilot

which information falls represent categories pilots have jntervention.

for the data. ) ) )
Pilot performance in both of these examples involves

The results suggested three cognitive dimensionsmonitoring the systems and determining whether they are
that pilots use in categorizing flight-deck information. fynctioning correctly. Because of these technological
These dimensions included advances, designers need to consider issues such as how

1. The flight function that the information is designed the pilot will monitor the flight progress, the crew's
to support gndersta}ndmg qf the flight management system, the
information required to support the pilots, and the cogni-
2. The strategic or tactical nature of the information  tive processing and mental models of the information
flow of the pilots. The consideration of pilot cognition
has thus taken on an added degree of importance in the

The results also suggested four specific high-level design of modern flight decks. The development of valid
categories that pilots use in categorizing flight-deck and reliable methods for addressing these issues will
information. These information categories included therefore become an important component from the
designer’s perspective.

3. The frequency of information referral

1. Aviation
Second, designers are challenged because of the
dramatic increase in the information that is or will be pre-
3. Communication sented to pilots (Braune, Hofer, and Dresel 1991; Ricks,
Jonsson, and Rogers 1994; Ricks et al. 1991). Part of this
challenge will be to include new sources of information
Although these high-level categories are sufficient that are designed to safely increase traffic flow (such as
for classifying the majority of flight-deck information, it data links and global positioning systems), while another
was found that additional differentiation can be made in part will be to include technological advances in the way
the aviation and the navigation categories. information can be stored and displayed to the crew.

2. Navigation

4. Systems administration

The four information categories were also prominent The glass cockpit has revolutionized display technol-
when analyzing how the pilots prioritized flight-deck ogy by allowing the presentation of multiple types of
information. Along the primary dimensions in which data on the same display. This presentation contrasts
pilots prioritized information, elements seemed to cluster sharply with earlier flight decks where electromechanical



displays were dedicated to the presentation of one type ofiess and lead to an appropriate cognitive workload,
aircraft information. Proposed information sources such thereby resulting in a more effective flight deck.

as an electronic library and an onboard maintenance sys-
tems may provide the crew with yet more data. Deter-
mining what information to provide and when to provide

it for a variety of tasks and functions will become

increasingly important.

The project reported herein addresses four principal
research issues. First is an empirical investigation of how
pilots cognitively process flight-deck information. Of
particular interest is the empirical identification of both
conscious and unconscious cognitive processes. These
results will help determine the mental representation
pilots have for flight-deck information, which is the ini-
mation adds to the complexity of analyzing crew tasks. :L;arlrr?;i%gorsduecvhekr)r?(l,l;gucrzgnift\ll\éingzalllf)l\]/\r/efegfe;gﬁvefsert_o
While automation frees the crew from many routine A . ) .

examine how pilots process the information they use to

tasks, it implicitly adds another requirement because . , ;
shared functions require the crew to have some underPerform tasks and, if valid measurement techniques can

standing of how the automation works, what it is doing, be developed, to determine whether the crew is subject to

and when it is doing it. Additionally, the crew must be over or underloading with respect to their cognitive pro-

able to ascertain when the automation may be incorrectlyCeSSIng abilities.

performing a given task and must be prepared to take  The second research issue concerns how pilots prior-
over should the automation fail. In fact, recent researchitize flight-deck information. The objectives of this issue
in this area suggests that, when evaluating performancesre to determine whether a common underlying strategy
effects of automation on the human operator, issues suclexists that pilots use to prioritize flight-deck information
as situation awareness and the pilot's mental model ofand whether a discernible classification scheme exists,
the automation need to be considered (Sarter and Woodghat will allow the development of a prioritization system
1994, Wiener 1989). Thus, the pilot's interaction with by category.

flight-deck automation implicitly adds another level of ) ) , ) .
information by requiring the pilot to have both an A third research issue is the consistency of cognitive

awareness and an understanding of how the automatioR"0C€ssing among pilots. That is, are pilots using similar
operates. cognitive processes for managing flight-deck informa-

tion. This issue is critical. If significant differences in the
xWway pilots process and categorize information exist, it
nwould be problematic to extend these findings to other
eas.

In addition to the trends previously mentioned, the
very fact that pilots share flight-deck functions with auto-

These concerns, frequently referred to as flight-dec
information management issues, suggest greater atte
tion will need to be given to the pilot's processing and &'

use of information. In the development of earlier flight The fourth and final research issue examines
decks, human factors engineers principally concernedyhether the cognitive processes used for flight-deck
themselves with form and fit issues (such as whether gnformation are invariant across different contexts. This
control was reachable, a display was readable, or theyyestion is concerned with whether the cognitive pro-

amount of strength required to actuate a control). Thesecesses pilots use change as a function of flight context.
developments suggest that more attention will need to be

given to the information flow between the pilot and the aAppreviations
flight-deck systems in conjunction with the cognitive
processes pilots use to process flight-deck information. ANOVA  analysis of variance

. . ATC air traffic control
While most of the previous human factors research ] ) ] ]
concerned features that were directly observable and®T!S Automatic Terminal Information Service
amenable to traditional measurement techniques, cogniCDU control and display unit

tive factors lack many of these features. For this reason
rigorous, empirical methods for determining the cogni-
tive processes of the flight crew are required. The DME distance measuring equipment
research program presented herein represents a first st
toward the development of measurement techniques that .
could be used as part of an early flight-deck design pro-FMS flight management system
cess for assessing the cognitive task loads that are assoge Q. first officer

ated with information processing. The availability of
such measurement techniques should allow for flight-
deck designs that increase the pilot’s situational awareINDSCAL individual differences scaling

CRT cathode ray tube

engine pressure ratio

ILS instrument landing system
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IRS inertial reference system learned to deal with new situations. . . . A cate-

L/R left/right gory system allows us to derive further informa-
o . tion about an object that has been assigned to a

MAU multiattribute utility category. For example, if you have categorized

MCDU multifunction control and display unit some object as an apple, you can infer how it is

MDPREF multidimensional preference scaling g;ﬁebcgefsé% iiiﬁﬁ’atg?é ('L hfjg? core, and that it

MDS multidimensional scaling
Thus, categorization allows individuals to infer a

ND havigational display great deal about a new source of information, because it
PCPREF  personal computer program for MDPREF  succinctly and implicitly describes characteristics of the
PED primary flight display information. Theories of how individuals categorize
- . information are matters of great debate in the cognitive
SAS statistical analysis system science community. Currently, there are two principal
TCAS traffic alert and collision avoidance system theories of categorization, one employing prototypes,
while the other is based on the concept of exemplars.

VHF very high _fr(_aque-ncy While it is not the intent of this research effort to experi-
VOR VHF omnidirectional range mentally differentiate between the two theories, it is

important to briefly review each theory to gain some
Background understanding of categorization models of cognition

o- prior to discussing potential applications for evaluating
pilot cognition. For a detailed analysis of categorization
énodels, see Ashby and Maddox (1993).

The concerns presented in the Introduction, fr
qguently referred to as flight-deck information manage-
ment issues, suggest that greater attention will need to b
given to how pilots use and process information. In S0 prgiotype explanations are predicated on the notion
doing, researchers should study cognitive processes rougai for any category, individuals develop a mental
tinely engaged in by flight crews. The categorization and jnstance, which is most representative of the category.
prioritization of flight-deck inform_ation. represent twWo  Thjg representation is referred to as the prototype. New
such processes. Because of their ubiquitous nature, iphiects are compared against the prototype of each cate-
seems appropriate to establish, in an empirical fashlongory_ If a new item is sufficiently similar to the proto-
how pilots categorize flight-deck information and how type, the item is assigned to that category. For example,
they judge the relative .import_ance of that information. It \yhen a person thinks of an aircraft, a prototype theorist
would be useful to review briefly both areas from theo- \yqid argue that the individual has a mental representa-

retical and applied perspectives. tion of what most aircraft look like. Mathematically, this
o . typicality can be expressed as an averaging process of all
Categorization of Information features that compose an aircraft (such as wings, tail, and

Humans are able to process and use large amounts dfight deck). Unusual aircraft, such as the Northrop-
information that are presented in everyday life becauseGrumman B-2 and the Beechcraft Starship, are viewed as
they can organize the information by relating it to prior suchprecisely becausthe prototype is violated.
experiences (thereby making it familiar). This organiza-
tional process draws heavily on an individual's long-term
memory and is usually referred to aategorization
Such grouping considerably simplifies the individual’s
processing of new information, not only by providing it
with a slot in which to reside, but also by providing some

Exemplar models of categorization differ from pro-
totype explanations, in that the new object is compared
with those individual items that compose a category. The
membership of an object in a category is defined by
selecting that category whose instances differ the least

general characteristics of the data once it has beer{rom the new item. This process essentially takes the

placed. This process, along with its benefits, has beeno'M of satisfying a minimization function, whereby an
nicely éummarized by’GIass and Holyoak (19é6)' object to be categorized is compared on all relevant fea-

tures to each object in a category. The category selection
Categorization is a fundamental cognitive pro- rule would be to select the category whose members dif-
cess because every experience is in some sense fer theleastfrom the object to be classified. With this

unique. For example, no two apples are entirely theory, features of an unusual aircraft, such as the B-2,
alike. However, if each experience were given a would be compared to various categories of things which
uniqgue mental representation, we would be fly (such as airplanes, helicopters, airships, and rockets).
quickly overwhelmed by the sheer complexity, The category selection would be based on an analysis of
and we could not apply what we had already the features of the B-2 and other members of the
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category. The B-2 would be assigned to the categoryine their spatial positioning (thus indicating their psycho-
whose individual members had features that were thelogical relatedness), “robin” was indeed closer than
least different from it. “chicken” to the category term “bird.” Third, the psycho-
metric techniques allow researchers to identify the cogni-
tive processes individuals use in categorizing and making
judgments.

Note that the principal difference between the two
theories is that exemplar models compare the item with
individual objects within the category, whereas prototype
models compare the item with the prototype of the Just as categorization is a pervasive function in
category. everyday life, it frequently occurs on the flight deck. It is
possible that pilots principally use two characteristics to
categorize and manage flight-deck information. First,
both the source (where the information is coming from)
3nd the destination (where the information is displayed

r used on the flight deck) provide the pilot with initial

Both models have yielded results consistent with the
notion that the presentation of information congruent
with an individual’s mental categorization scheme leads
to superior performance as measured by accuracy an
response time. F_or example, Posner and Keele (1970gues about content of the information. For example, the
studied classification performance for visual random dot flight crew can initially make some inferences about a
patterns that had been memorized by subjects. The memr'nessage from its source (e.g., ATC, dispatch, or ATIS)
orized patterns were variants of prototype patterns thatprior to interpretation, From 'th.é pilot"s perspec’tive des-
were constructed by distorting the prototype by r<'indomlytination or location i§ probably most critical beéause

moving the dots. Subjects were then tested by using the : o L
memorized patterns, the prototypes from which the pa,[_where information is displayed usually indicates the type

terns were constructed, and two variants of the proto-Olc information. For example, in & glass cockpit, assuming

types that the subjects had not seen. As expected, WheaII CRT'’s are operative, pilots know what information

tested on classification performance, individuals gave the{hey can expect to see when they view any of the dis-
P ' gave lays. However, because display technology allows for
fastest and most accurate responses to the stimuli the

had previously memorized. Of particular interest was he presentation of multiple types and layers of informa-

that as distortion from the original prototype increased, gon, Iopathn may no longer be as predictive as it has
. een historically.
more errors and longer response times were observed.

Second, the functions that the information support
will provide an introduction to how the information will
be categorized. Traditionally, pilots are trained to aviate
(control of the aircraft), navigate (location and destina-
tion), and communicate (communicate intentions to
%TC). This training provides one high-level framework
for categorizing, although further subdivisions may be
possible and even desirable. This issue is a major con-
cern of the research presented in this paper.

Similar results have been found for meaningful stim-
uli such as words and figures (Reed 1972; Rips, Shoben
and Smith 1973). For studies involving semantic stimuli,
subjects will respond quicker and/or more accurately to
instances that are closest to the category. For a concret
everyday example, individuals will take longer to cor-
rectly judge that a chicken is a bird, than a robin is a bird.
This longer judgement time is due to the fact that for the
majority of individuals, “robin” represents a more typical
instance of a bird than does “chicken.” As automated information management aids are

The results of these experiments have demonstratec'lntrOdUCEd on the flight deck, the information discussed

three major conclusions. First, inclusion of superordinate previously suggests that the processing and the categori-

; .~ ~zation of flight-deck information should be consistent
category terms allows researchers to see which stimuli

with the pilot’s cognitive model of flight-deck informa-
most closely cluster around them. In the above example,. :
o « o tion categories.
robin” and “bluejay” were much closer to the super-
ordinate term “bird” than were “goose” or “duck.” Sec-
ond, the time to make category judgments (e.g., is this
instance a member of categorgr y?) is directly related Prioritization refers to the process by which informa-
to the psychological distance subjects have for the givertion or actions are ordered along some dimension or by a
set of stimuli. Psychological distance can be measuredgiven attribute. Single or multiple dimensions and/or
guantitatively by using psychometric scaling techniques. attributes may exist, depending on the characteristics of
These technigues will be discussed subsequently. Thehe information and the actions. For example, logical
farther apart a pair of items was in the psychological dependence, wherein one source of information is
space, the longer it took subjects to make category judg+equired before the next piece of information can effec-
ments. In the above example with birds, Rips, Shoben,tively be used, could be considered an attribute. In this
and Smith (1973) discovered that, when analyzing thesecase, the first source of information acquired would
data with techniques that allowed investigators to exam-initially be said to have a higher priority than the

Prioritization of Information
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subsequent information. While it is important to recog- checklists. For nominal information, however, pilots
nize in any prioritization scheme, logical dependencieshave aids to help them determine what information is
are rather trivial. Of considerably more interest are prior- required and when it is needed. Such aids are represented
itization dimensions that involve relative attributes or in the form of

dimensions that change with situations and differ among
people. This multidimensional and dynamic nature of
information is of primary interest for the current research 2. Procedural checklists
plan. As with categorization, such dimensions and
attributes can be conceptualized as cognitive variables
that people use to prioritize the information they use to 4. Operational demands
perform some function.

1. Flight operations manuals
3. Training procedures and company policy

o ) ) o In general, high-level principles govern prioritiza-

Prioritization is usually considered as an issue within tjon |nformation required to maintain a safe flight will
the context of decision theory. With this perspective, new recejve a high priority value. Likewise, because some
information arrives and the user of this information ctjvities must be performed in limited amounts of time,
decides how to prioritize it in the context of the current jytormation required to support a time critical activity
state. From a decision theory context, this information i pe obtained prior to information necessary for less
can be analyzed as a specialized, expected utility probyime critical activities. Finally, information can be priori-
lem that is expressed through multiattribute utility tizeq on its logical dependency—one piece of informa-
(MAU) models (Edwards 1987). tion is necessary before another piece of information can

In the MAU framework, an attempt is made to deter- be used (e.g., one needs to know the ATIS frequency
mine what variables the decision maker considers, theP€fore gaining access to that information).
relative weight given to these variables, and the utilities Availability of data must also be considered when
for the expected outcomes. As Edwards (1987) states  giscussing prioritization. Flight-deck information may be

Formal decision theory assumes that the continuously available (a dedicated display) or the pilot

(individual) decision maker has a setvalues may have to engage in a series of actions to obtain it (a
and chooses acts that, as he or she sees it, will humber of button presses on the FMS CDU). Alterna-
best serve them. . . . The consequences of each tiVG'y, information may be prOVided to the crew without
act, or of each act-event-act-event . . . sequence, & specific request having been made. Primary examples
are callecbutcomesEach outcome is conceived of this include

of as having a subjective value atility.
(pp. 1063-1064)

Once the attributes have been identified, a determi-
nation is made of how much weight the decision maker 3. Sources such as data link and intelligent flight-deck
wishes to give each of them. For example, in purchasing aids

a car, a new car buyer may consider reliability, safety, Information competing for available cognitive pro-

and cost as highly relevant attributes, while color, style, . d the i ¢ £ under-
and gas mileage may be considered less relevant. For a%tessg.]g resgiutrces un terscores d € |mp?rlancedo | un fer
individual making a purchase, each of these variables can ?n 'ng p]ilo expﬁc ;’:I\.n%y dank mental models o
be ordered in terms of its salience for making a purchas-m ormation flow on the flight deck.

ing decision.

1. ATC communications

2. Warnings, alerts, and cautions

Psychometric Tasks and Analyses

Analogously, pilots must prioritize the attributes of
new, incoming information relative to that of information
currently available and the state of the aircraft. ldentifi-
cation of how pilots normally process data, with empha-
sis on what attributes are considered particularly salient
and the categories into which different data fall, is a
prerequisite for understanding how pilots prioritize
information.

Recent developments in cognitive research have
demonstrated the usefulness of psychometric techniques
in representing human knowledge and information pro-
cessing (Ashby 1992; Nosofsky 1984, 1986, and 1992;
'Shepard 1987). One method, MDS, calculates a spatial
representation among stimuli by using some measure of
how the stimuli are related to one another. This spatial
representation presents the objects imatimensional

Currently, pilots are responsible for prioritizing space, with items similar to one another lying close
flight-deck information. In some cases (principally emer- together, while dissimilar items lie farther apart in the
gencies) task and information prioritization is done for space. Another method, cluster analysis also uses a mea-
the crew by aircraft system controllers or emergency sure of stimulus similarity that identifies items closely
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associated with one another, groups them, and provides auch valid measurement scales can be developed based
hierarchical representation of the stimuli, thereby allow- on the results of the study reported herein, this informa-
ing the investigator to examine the representation fortion could be used early in the flight-deck design process
obvious or intuitive categories. Objects placed in the to determine both the potential for information overload
same cluster are more similar to one another than objectin certain flight phases or the potential for tasks to com-
placed in different clusters. pete for the same set of cognitive resources. Such appli-

For both methods, when the measures for stimuli cations are discussed in appendix A.

relatedness are elicited from human observers, the reprelvI thod
sentation is said to be cognitive or perceptual. Of particu- etho

lar interest to researchers is the potential for cognitive  The experiment described in this paper was con-
interpretations of the dimensions or clusters emergingducted at Langley Research Center. Details concerning

from such analyses. Although some of the most sophisti-the subjects and the procedures are given in the following
cated work in this area has been done in the last 10 yearggctions.

MDS had been used as early as 1973 by Rips, Shoben,

and Smith. Subjects

The assumptions underlying the use of scaling and  Fitty-eight pilots participated in this experiment. Of
c!us_terlng_ in cognitive experiments are, in general, quite these, six subjects were eliminated from the subsequent
similar. First, the scaling solution for a given set of stim- 4at5 analysis. Three of these six were removed because
uli is said to be a cognitive representation for how indi- 4| commercial airline time was spent as a flight engi-
viduals view the relationship among those items. FOrneer, two subjects had no commercial airline experience,
flight-deck information, this would be a representation of gnq one pilot indicated he had given erroneous responses
how related or similar the flight-deck information is per- pecause of a misinterpretation of one of the stimuli. The
ceived as being. Second, dimensions extracted from thgemaining 52 subjects were all commercial airline pilots
scaling analyses can be considered as representing thgho were currently flying or recently retired. The mean
salient cognitive dimensions along which |nd_|V|dua_Is total flying time for these subjects was 11435 hr with a
process information. In the present case, such dlmen5|on§ange of 3000 to 27000 hr. Average commercial experi-
would reflect those variables pilots use to process flight- oce was 15 years with a range of 1.5 to 33 years. Of the
deck information. 52 subjects, all but 1 were male. Eight airlines were

Categories or clusters of information tell researchersfepresented.
how pilots define category membership. In the aviation o
domain, three of the most frequently mentioned high- Stimuli
Ie;/_el categﬁrles_arehavEte,hnawgate, and commurflf[cgte. Experimental stimuli were obtained from an un-
Of interest here is whether these categories are su IClenbub”Shed information anaIySiS performed on the

to describe all the information pilots use, or whether aBoeing 747-400 by John Groce of Boeing Commercial
finer distinction may be more appropriate. Aircraft Co.

The potential for discovering the way in which pilots This analysis consisted of determining all informa-

process flight-deck information should not be (:onsideredtion elements on the 747-400, each with its associated

me“?'y descriptive. Rather, _dlmenS|ons found through source, destination, display modality, message manage-
scaling analyses and categories that emerge from cluster:

; id b di Jictive fashion f luati ment schemes, and control modality. (An information
Ing c’ou € used in a predictive fashion 1or evalualing a g e men represents a discrete unit of data available to the
pilot’s cognitive processing under different flight scenar-

! : : ilot, usually associated with a specific display or inter-
16S and hew flight-deck deS|g'ns. Because the psychometfr)ace_) “Trug Heading,” for exameJ)Ie, is anpim}grmation
rc techn'|ques used, hefe'r.‘. may prove usefl_JI N element associated with the navigation display.
representing the pilot's cognitive processing of flight-

deck information, it might be possible to use this data in This entire list consisted of 396 information ele-
constructing models for evaluating the cognitive ments. To examine information elements applicable to
demands placed on pilots as a result of the tasks they arall modern commercial aircraft, terms specific to the
performing. High cognitive task loads could indicate a 747-400 were eliminated by having three commercial
situation where the crew may be unable to adequatelypilots (none of whom flew the 747) go through the list of
perform a task; therefore, consideration should be giveninformation elements and identify terms unfamiliar to
to modifying the design and/or the operational proce-them. These items were subsequently taken off the list.
dure. This consideration could prove especially valuableNone of these pilots participated in the experiment. Traf-
for evaluating flight decks early in the design process. If fic alert and collision avoidance system (TCAS) items
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were also removed, because at the time of this study itmake similarity judgments between pairs of information
had not been fully implemented on all commercial air- elements for a given set. The second task required sub-
craft. Elimination of the above items reduced the total setjects to rank the terms in their perceived order of priority
of information elements to 259. The items that remainedunder two different contexts. Each task is described in
on the list were considered to be generic. That is, infor-detail in the following paragraphs.

mation was currently available and understood by any

commercial pilot flying, regardless of aircraft type. For the similarity judgment task, two information

_ o _ elements were presented on a computer screen, one

Two stimulus sets, each containing 20 items, were ghove the other. The subject was then asked to provide a
constructed by random item selection from the genericrating of how similar the items were thought to be. A
list. Random item selection was used so as not to bias th@cale from 1 (very similar) to 9 (very dissimilar) was
outcome of the results. The experimental analysesysed for the rating. In the lower portion of the display, a

employed herein are based on determining the subject'scale bar appeared on every trial, which afforded the sub-

cognitive organization of the stimuli. Had the experi- jects constant access to the rating scale. Subjects could
menters selected the stimuli, it could be argued that themake similarity ratings by using the number keys or
findings were their mental organization of the moving an “X” along the rating scale bar with the arrow

information. keys on the computer keyboard and then pressing the

Although it is desirable to have more items in the enter key once the cursor was at the selected similarity
stimulus set to enhance the diversity of stimuli, pre- 'ating. This screen arrangement is shown in figure 1. A
testing revealed that more than 20 items took a considerSomputer program (Ricks 1994) randomized the order of
able amount of time, which led to subject fatigue. the pairs presented to each subject. Subjects rated the

Twenty items represented a balance between having sufSimilarity of each pair once. This produced a total of 190
ficient stimuli for analysis, and minimizing subject trials (half the matrix minus the diagonal). Subjects were

fatigue and time required to perform the tasks. The final frée to take a break at any point during the experimental
sets are hereafter referred to as set A and set B. Foufials when they became fatigued.

terms were common to both sets and are presented at the
bottom of each list in boldface. The two sets are shown in
table 1.

To acquaint themselves with the computer display
and response arrangement, subjects initially practiced
making comparisons among six common automobiles.
At the end of the practice, subjects were shown a list of
six information elements similar to those to be evaluated

Each pilot participated in two separate tasks with in the experimental set. Subjects rated the similarity of
either set A or set B. The first task required subjects tothese terms, both immediately before and after the

Procedure

Table 1. Random Samples of Flight-Deck Information Elements

Set A Flight-Deck Elements

Set B Flight-Deck Elements

Alternate flap control status

Clock time

Commanded pitch angle

Crew oxygen flow indication

Current stab trim

Distance to reach selected altitude

Flight number

N1 RPM limit

Passenger oxygen system mode (RESET/NORM/ON)
Predicted fuel at waypoints

Relative bearing/distance of waypoints (intersections)
Selected roll mode

Speed range for in-flight engine restart

Total air temperature

True heading (current)

Zero fuel weight

Pilot-initiated request or message
Predicted/estimated wind for descent

Selected altitude

Speed restriction data (speed limit, altitude)

Actual EPR
Autothrottle disconnect status

Current bank angle

Current calibrated (indicated) airspeed

Engine fire condition

Flight path angle (inertial)

ILS tuning data (ident/freq/inbd crs/DME)

Incoming ATC message (clearances)
Incoming dispatch message (company comm.)
IRS information source (for Captn & F.O. PFD/ND)
Landing reference speed
Oxygen pressure (crew and passenger)
Selected vertical speed

Target N1

VOR tuning data (freg/ident and radial/course for L/R VOR’s
Wing anti-ice status

Pilot-initiated request or message
Predicted/estimated wind for descent

Selected altitude

Speed restriction data (speed limit, altitude)




data. Subjects were not told of the second prioritization
/ \ condition (takeoff condition) prior to its introduction.

e 1: Landine Ret coond The takeoff condition always followed the generic
erm 1. Landing Reference spee

Term 2: Speed Restriction Data Cond|t|0n-

Following the experimental tasks, subjects were
1 3 5 7 9 asked to fill out a questionnaire for their opinion on sev-
2 4 | 6 | 8 | eral issues related to the categorization and prioritization
of flight-deck information. A copy of the questionnaire
appears in appendix B.

VERY SIMILAR X VERY DISSIMILAR

How Similar?> 3

K / Results and Discussion

0 ] Of the 52 subjects retained for analysis, 27 used
[ ] set A stimuli while 25 used the set B stimuli. The corre-
| | lations between the sessions preceding and following the
experimental trials (six information elements similar to
those in the experimental trials) were calculated for each
subject. None of the individual correlations were nega-

experimental trials. This practice rating allowed for the tive, and the average test-retest correlation was a moder-
calculation of a test-retest correlation to determine ate 0.536. Both factors suggest that subjects were using

whether subjects were using the rating scale consistentlythe scale .consistently, Given this information, data from
. . o " all 52 subjects were used.
Prior to making similarity judgments for the experi-

mental set, subjects were given a list of the 20 terms they ~ Upon completion of the experimental trials, data
would be rating. If the subjects had any questions aboufrom each subject were stored in matrix format on com-
items on the list, the experimenters showed them the relputer disk. The individual subject files were analyzed
evant section of the Boeing flight-deck operations man- with personal computer versions of the Individual Differ-
ual (Anon. 1992) for clarification. ences Scaling (INDSCAL, Carroll and Chang 1970),

) . e L . hierarchical clustering (average linkage method, cf.
_ Subjects were given no specific definition o_f similar- Romesburg 1984), and multidimensional preference
ity to perform the comparison task; they were simply told gna\ysis (cf. Carroll 1972 for analysis implemented with
to use \_Nhatever d_ef|n|t|0n of sm_nlarlty they felt comfort- PCPREF) programs. These analyses were run separately
able with. Following the experimental trials, however, o, he set A and the set B respondent data, and will be
subjects were asked to explicitly state how they judged,enorted separately. Results have been organized in this
thg similarity of the presented items. The entire similarity gaction by the research question being addressed. Analy-
rating task took approximately 30 min. sis procedures used to address each issue have been bro-

In the second part of the experiment, subjects priori- k€n out separately within each area.

tized the same set of 20 items that was used for the simi-

larity judgments. These prioritizations were performed How Pilots Cognitively Process Flight-Deck
under two conditions. Under the first condition, subjects Information

were given the stimuli on 20 separate index cards and
told to order the deck of cards according to their per-
ceived priority without regard to a specific phase of
flight. This was termed the generic condition. Upon com-

Figure 1. Experimental screen response arrangement.

As noted in the section entitled “Background,” cog-
nitive researchers have used psychometric techniques,
such as MDS and cluster analysis, to infer how individu-

pletion of this task, the data were recorded, and the cardéIS ”.‘?”ta”y represent information and thg associated
were shuffled and given back to the subjects for a secon -ognitive processes they use to act upon their representa-

prioritization. Under the second condition, subjects were on. I_n the current study, these techniques were used to
told to order the items in the context of the takeoff phase_examlne how pilots represent, and therefore process, typ-

of flight. For both conditions, subjects were told to con- ical flight-deck information. Similarity ratings, which
sider all systems as operatin’g normally were collected by having subjects evaluate the flight-

deck information pairs, served as data for both statistical

Analogous to the similarity rating task, subjects were techniques. These data were analyzed by using
told to order the stimuli in each condition by using what- INDSCAL and hierarchical clustering techniques. For
ever definition of priority they had. After each ordering, each technique, results will be followed by interpretation
subjects were asked to describe how they prioritized theand discussion.
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Individual Difference Scaling of some comparisons for the pilots, these fits are good.
These three-dimensional solutions, as well as an interpre-

. IND.SCAL ISa statistical techn_|que that uses ProXim- ation for sets A and B, are presented in figures 2 and 3,
ity matrices as input for each subject. Such matrices rep-

. L respectively.
resent some measurement of stimulus dissimilarity. In
the present case, this measurement was the pairwise For the plots shown in figures 2 and 3, each stimulus
comparison data from the computer trials. The element was plotted in the three-dimensional space and
INDSCAL model computes a group solution that repre- the viewing angle was changed so that each stimulus was
sents the stimuli spatially in dimensions. The model visible in the plot. Because this rotation was performed
attempts to fit the data so that items perceived as beingbout the coordinate axis, the relative position of items in
very similar to one another are located in close proximity the plot remained identical. These plots were then shown,
in the n-dimensional space; whereas, items perceived asyithout the dimensional labels, to several subject matter
being dissimilar lie far apart in the space. Because thisexperts for interpretation. In addition, the questionnaire
solution is generated with data from all subjects, thesedata on similarity were used to aid in interpreting these
dimensions are said to be common to all individuals in splutions. The names assigned to the dimensions here
the sample. represent a consensus of the responses obtained.

A unique aspect of the INDSCAL approach, how- For sets A and B, one dimension appears to repre-
ever, is the idea that while individuals may process stim-sent traditional flight functions. This is indicated on both
uli by using the same group dimensions, it is unlikely piots with items on the left side of the dimension relating

that they use the dimensions equally or in the same waytg aviate functions, those in the middle relating to navi-
For this reason, INDSCAL also calculates dimensional gation, while items on the far right related to communi-

weights for each subject, which indicate how relevant or cation. This dimension has been labeled “Flight
salient a dimension is for an individual. Thus, the group fynction.”
space allows the investigator to examine the common
cognitive processing of stimuli, while the weights allow The second dimension appears to represent control
one to evaluate the degree to which each subject uses tr@nd planning functions or, as indicated on the plots, what
group dimensions. The subject weights from thesemight more generically be referred to as a tactical and
INDSCAL analyses are reported in the section entitled Strategic continuum. Note that items on one end are
“Individual Difference Scaling.” related to direct, short-term, aircraft control (such as
o “Commanded Pitch Angle” and “Selected Roll Mode”
~ The INDSCAL model was run on the individual sub-  for set A and “Engine Fire Condition” and “Current Air-
ject matrices for set A_ and set B stimulus sets. Da_ta iNspeed” for set B), while items on the opposite end of this
each set were scaled in one, two, three, and four dimengimension support long-term flight activities (such as
sions. The dimensional solution was selected based orRg|ative Bearing/Distance of Waypoints” and “Pre-
the percentage of variance for which it accounted andgicted Fuel at Waypoints” for set A and “VOR Tuning
ease of interpretation. Beyond the three-dimensionalpata” and “Predicted/Estimated Wind for Descent” for

solution for each set, neither the percentage of varianCéet B, This latter dimension has been labeled “Flight
nor the ease of interpretation increased appreciably;sction.”

hence, the three-dimensional solutions were retained for
analysis. To avoid local minima solutions, multiple runs The third dimension for sets A and B might best be
were performed on each set with five randomly gener-described as the number of times the pilot refers to or
ated starting values. The five random starting values pro-uses a given piece of information. As indicated on the
duced virtually identical final configurations within each plots, this dimension has been labeled “Sample Rate.”
set, which suggests that none of the final configurationsltems with high values on this scale represent informa-
arose from a local minimum (differences among solu- tion referred to more frequently than information with
tions in terms of variance accounted for were in the lower values. In set A, the “Relative Bearing/Distance of
1-percent range). Waypoints” has a higher value on this dimension than
“Crew Oxygen Flow Information” or “Passenger Oxygen

The setA solution selected for interpretation System Mode.” Analogously, for setB, “Current Air-
accounted for 36 percent of the variance and the averageneed” and “Selected Vertical Speed” have high values

correlation between computed and actual subject scoregrenresenting frequent referral), while items less often
was 0.595. The set B solution selected for interpretation;seq such as “Engine Fire Condition” and “Wing Anti-
accounted for 42 percent of the variance and the averagg.q Status,” have low values along this dimension.
correlation between computed and actual subject scores

was 0.635. Given the random stimulus selection, the = The INDSCAL dimensions discussed previously
number of subjects within each set, and the unique naturgepresent how this group of subjects viewed the
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Figure 2. Spatial solution and interpretation of set A similarity data.

information they regularly use on the flight deck. The United States and no information about this city in rela-
results for sets A and B are based on a randomly selectetlon to the other cities, this task is not possible.
sampling of information elements (20 in each set) from
the larger set of 259 items. While it is reassuring that the ~ Note that the INDSCAL dimensional solutions are
two sets that used these information elements producedmportant, not because they describe the relationship of
similar solutions, the intent is to extend these results tothose items measured in the original analysis; rather, they
include flight-deck information that was not part of the are important because they give insight into how individ-
original set A or B data. An important issue will be how uals perceive the relationship of the items and offer pos-
to extend these results to all data. sibilities for how this view may be employed in future
studies. This view, of course, represents the dimensions.
To illustrate this issue with a concrete example, con- Because the dimensions described here may be represen-
sider a multidimensional scaling analysis of 10 cities in tative of cognitive processes that pilots use with flight-
the United States, where the data matrix consists of dis-deck information, the identification of dimensions is
tances between those cities. The analysis produces twextremely useful. As discussed in appendix A, these
dimensions; interpretation of which reveals that they cor- dimensions can be quantified and may be employed by
respond to the North/South and East/West map orienta-having pilots scale other flight-deck information not
tions (Kruskal and Wish 1978). Now assume a new city included in the study as part of the current stimulus set.
is presented and it is to be placed among the other 10 irfWhile it is possible with the introduction of new tech-
the spatial plot. With no knowledge of geography of the nology that completely novel information may be
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Figure 3. Spatial solution and interpretation of set B similarity data.

introduced, it would seem that a flight-deck engineer in the world. For example, individuals have well-
could make a fairly accurate estimate of the characteris-developed categories into which they place animals regu-
tics of this information.) These data, in turn, could be larly encountered. These categories could include “cats,”
used as part of a cognitive task analysis for future flight- “dogs,” or “birds.” As noted in the “Background” sec-
deck designs. Development and validation of such scalegion, this categorizing considerably simplifies an individ-

will be, of course, a necessary first step. ual's processing of new events and information.
Analogously, it seems plausible to assume pilots have
Hierarchical Clustering high-level categories for flight-deck information they

The MDS analyses provide spatial solutions for the regularly encounter.

proximity data. When viewing these plots, the dimen- This analogy is precisely the reason for exploring
sions are interpreted primarily by examining where infor- those categories into which pilots place flight-deck infor-
mation elements lie along the dimensions. In doing this mation. Recall from the “Background” section that stud-
examination, researchers will often notice items that tendies have shown that presentation of information
to lie close to one another in the space. Such groups otonsistent with an individual's cognitive categorization
points, while potentially aiding interpretation of the spa- scheme may lead to superior performance, as indicated
tial plots, may also be indicative of a natural category. by measures for accuracy and response speed. For this
Such categories emerge from the classifications individu-reason, identification of the natural categories that are
als have learned to make of events or objects encounteredsed by pilots (if they indeed exist and can be adequately
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defined) may prove useful in developing new informa- 3. Communication

tion presentation formats and information management n )
systems. 4. Systems administration

To address this issue, the original (or raw) proximi- Each of these categories may be defined by using a
ties for the pairwise comparison data, which were aver-Modified series of definitions described in Abbott
aged across subjects were clustered hierarchically (1993). Aviation may be defined as the process “of
Analyses were run with the PROC CLUSTER procedure 2djusting or maintaining the flight path, attitude, and
developed by SAS Institute Inc. (Anon. 1988), which speed ,?f the.[alr'craft] relative to fllght guidance require-
specified the average linkage method. Cluster analysis ign€nts.” Navigation may be defined as the process of
a technique that attempts to group objects together_develc’p'”g :[,he deS|req plan of flight. . . and monitoring
according to their similarity. Although several variations 't Progress.” Communications can be defined as involv-
are possible, the analysis typically begins by grouping'"9 the tran;fer of information beftween the crew and
the most closely related objects (based on proximity), ATC. the airline company, and flight crew members.
treating this cluster as a new individual object, and thenFinally, systems administration may be defined as the
recalculating its proximities with the remaining objects. Process of monitoring the state of aircraft systems, iden-
This iterative approach continues until only two clusters tfYing when actions may need to be taken to return a
remain. (For a full description of the most widely used SYStém to nominal status (if possible) and making such
clustering approaches, see Romesburg (1984).) Thé&hanges.

resulting output is often presented in the form of a den- cjgger inspection of the large navigational cluster
drogram (or hierarchical tree). When presented laterally, 5\, gqests a further distinction could be made within that

as is the case here, closely related ite_ms cluster tertheérouping. A differentiation could be made between pure
at the far right of the dendrogram, while the further one 5,5ational information (‘Relative Bearing/Distance of
proceeds toward the left (up the plot), the less similarity 4y noints” and “Distance to Selected Altitude”) and
is perceived among individual items and the fewer dis-jnormation traditionally considered as being reference
tinctions (in the form of clusters) can be made. data (“Speed Range for In-Flight Engine Restart’ and

Cuts in the dendrogram were made where there was N1 RPM Limit”). While it is useful to recognize that

a high level of stability in the obtained clusters. This cri- such a distinction can be ”?ade’ for purposes of parsi-
terion means that the cut point could be moved across ony, the four-cluster solution was fe‘f""r.“?d- Based on
relatively wide range of the dendrogram without signifi- the dendrogra}m cuts for the raw proximities data, the
cantly affecting the number of clusters (for information same fOW high-level clusters emerged in setB as
on how to make dendrogram cuts, see Romesburg 1984)e.merged in setA.

The dendrograms for th_e raw similarity ratings of sets A Results from the cluster analyses suggest pilots con-
and B are presented in figures 4 and5, respectively.cepyalize flight-deck information into at least four dis-
Based on where the cut was made, boxes have beefinct categories. These categories are probably best
placed around the clusters. Interpretations have also beeEaptured by the descriptors (1) aviation, (2) navigation,
assigned to these clusters and are so identified. As with(3) communication, and (4) systems administration.
the INDSCAL plots, the clusters were examined by sub- pe|ating these results to the prior INDSCAL solutions,
ject matter experts and names were assigned to the clugpese categories appear most strongly related to the flight
ters after review. function dimension. While three distinct activities
appeared along that dimension for the INDSCAL analy-
ses, the cluster results suggest that systems administra-
ﬂon would most closely align itself with communication.

Although some differences occur between the spatial
position of the information elements from the INDSCAL
analyses and the clustering results, in general the patter
of results proved quite similar. That is, items that were
located close together in the INDSCAL plot also tended
to group together in the cluster analyses.

inally, the fact that similar clusters emerged across two
separate data sets, with each having substantially differ-
ent items, is reassuring because it suggests the same clus-
ters generalize across two data sets.

Based on the dendrogram cuts, four high-level clus-

L While three of the four information elements com-
ters emerged for the set A raw proximities data and have I o
o . mon to both sets appeared in different clusters, it is
been labeled in figure 4. These clusters include

important to note this occurrence was most likely

1. Aviation because of the random stimulus selection employed. For
example, a cluster, most appropriately considered as nav-
2. Navigation igational, emerges in both sets A and B. However,
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Figure 4. Clustering dendrogram of set A similarity ratings.
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because the stimulus selection procedure selects rartion. To explore this, a statistical technique called multi-
domly, set B had three information elements, that weredimensional preference analysis was employed. As noted
all strongly related to flight navigation. These relation- earlier, to address the dynamic nature of flight-deck
ships had the effect of forming an extremely tight naviga- information usage, pilots were asked to prioritize under
tion cluster that contained three navigation items andtwo separate conditions. One prioritization occurred
forced the other items, that were related to navigation,without regard to any specific phase of flight (generic
albeit less so, into the larger aviation cluster. Likewise in condition), while the other was in the context of the take-
set A, four information elements, strongly related to avi- off condition of a flight mission. The results for each of
ation, formed a tight cluster that left a large cluster thatthese experimental conditions will be presented sepa-
contained items principally related to navigation. This rately for sets A and B.

failure to find the identical information elements in the o ] ) )
same clusters is not surprising because the sets were ran- Multidimensional Preference Analysis (MDPREF) is
domly formed, and the experimenters had no control@ technlque_ that takes ranked data and. provides a joint
over the combination of stimuli appearing in each set. "eépresentation of the data and the subject preferences.
When examining clustering results, the important thing The analysis presents the stimuli spatially, analogous to

to note is that the cluster names are consistent with thenultidimensional scaling. The MDPREF analysis was
items they comprise. conducted with the PCPREF algorithm, which is a per-

sonal computer version of MDPREF. (See Carroll 1972).

The cluster analyses also provide insight into how This implementation accepts data ordered by subjects as
pilots categorize regularly used flight-deck information. input. The program then computes principal components
While most anecdotal evidence from pilots suggests thatfrom these data. The number of components that are
they divide information into three categories (aviate, retained is determined by (1) examining the additional
navigate, and communicate), the current findings suggesvariance that is explained by adding a new component
that a richer categorization scheme may be operatingand (2) the overall interpretability of the solution.
with pilots willing (either consciously or not) to make
finer gradations to the information they process. These ~MDPREF analyses were conducted on each set for
gradations are seen here as systems administratioRoth generic anq _takeoff conditions. Ac_ro_ss all four runs,
emerging as a fourth category in the analyses and Withint_he dimensionalities were extremely similar. Each solu-
categories, such as navigation, the emergence of furthefion generated one principal component that accounted
differentiation in the form of navigational information for over 40 percent of the variance and a second compo-
and reference information. (An alternative distinction Nent that accounted for approximately 10 percent of the

within this category would be dynamic and static infor- variance. These variance percentages indicate the extent
mation, because items such as “N1 RPM Limit" and to which each component provides information about the

“Speed Restriction Data” involve fixed values, while data. When the components are viewed in the context of

“Predicted Wind for Descent,” and “Predicted Fuel at Uncovering information in the raw data matrix, large per-

Waypoints” involve dynamic or changing information.) ~ ¢entage variances could be expected to account for more
information. As successive components are extracted, the

In determining how pilots process (and prioritize) variance accounted for by each component will decline,
information, it would be tremendously useful to work and begin to represent random variation. Here, the first
with high-level functionally related categories, such as components accounted for a large amount of the variance
those empirically found herein instead of working with for each solution, and the variance of components
the individual information elements. As will be discussed beyond the first two dropped off sharply. For these rea-
in the section “How Pilots Prioritize Flight-Deck Infor- sons, and to achieve maximum interpretability, two-
mation,” the clusters emerging from these analyses mawlimensional solutions were selected for all runs. The
prove useful in developing models for the prioritization percentage variance accounted for by each factor is pre-
of flight-deck information. sented in table 2 for sets A and B for the generic and the

takeoff conditions.

How Pilots Prioritize Flight-Deck Information . .
An overview of the results for these four factorial

How pilots prioritize flight-deck information was a conditions will be presented because the same pattern of
second concern of this research project. While the proceresults emerges across all four conditions. Specific
dures already described (INDSCAL and hierarchical results for each of the four conditions will be discussed
clustering) provide the researcher with insight into how in further detail in the following sections. Along the first
pilots perceive the flight-deck information elements to be dimension, high values were found for aviation informa-
related, these procedures do not directly address theion, moderate values were observed for navigational
underlying method that is used to prioritize the informa- information, and system status information exhibited the
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Table 2. Proportion of Variance Accounted for by Each Factor in the MDPREF Analyses

Set A SetB
Condition Dimension 1 Dimension 2 Dimension 1 Dimension 2
Generic 0.434 0.138 0.478 0.094
Takeoff 0.504 0.130 0.595 0.109

lowest values along this dimension. This latter finding is

Generic condition.Two principal components ac-

not surprising, given that status data in these sets deaktounted for a total of 57 percent of the variance. The spa-
primarily with emergency information and subjects were tial plot is shown in figure 6. To aid with interpretation
instructed under both conditions (generic and takeoff) toof the plot, those clusters obtained from the similarity
consider all systems as operating normally. The seconddata for set A (reported in the “Hierarchical Clustering”
dimension appears to be capturing communicationssection) have been labeled with the high-level descriptors
information because these items define the extreme endaviation, navigation, communication, and systems
of the dimension. administration) used previously. This technique is used
because the cluster names superimposed on the plots

Multidimensional Preference Analysis of Set A

Rankings

Average rank of set A data under both the generic

and the takeoff conditions are provided in table 3.

Table 3. Average Rank of Set A Data for Generic and Takeoff

Conditions

were derived from a completely independent analysis.
Interpretation of spatial solutions is achieved by defining
dimensional endpoints and by identifying those items
that tend to group together. The cluster analysis provides
this information and allows any structure in the solution
to be observed.

Items in the high end of the first dimension princi-
pally include aviation information. Navigational infor-
mation falls toward the middle of this dimension, while
systems administration information is found in the lower

SetA data Generic conditiop _ Takeoff conditidn o “The second dimension has communications infor-
A oitch L 4 mation at the high end, while systems administration data
TrueHead 3 5 account for some items at the lower end.

RollIMode 4 7 . . .

N1 RPM Limit 5 2 While the dimensions from MDPREF plots often
SpdRestriction 6 11 lead to obvious interpretation, the solutions obtained here
ﬁ%ggﬁg{‘g Z; %‘; are more complex. One reasonable interpretation, which
CurrStabTrim 9 3 appears across all the MDPREF runs, would be a primary
DistToAlt 10 12 importance dimension and a secondary importance
%ﬁrggggm\gss 1112 ® dimension. Several factors argue for this interpretation.
Flt # 13 8 First, the primary dimensionX{axis) captures a large
CrewOxygen 14 16 amount of the variance. This occurrence could be taken
?LerW'“d 1%5 1%0 as suggesting a unidimensional solution is sufficient to
SpdRange 17 18 capture the information contained in the ordering data.
PassOxygen 18 15 Because the first dimension in an MDPREF solution typ-
,(A:lltoFclg pStatus 1290 1139 ically approximates a consensus of the agreement of the

stimulus ranking across subjects, this solution would
suggest that the first dimension is a good representation

The correlation between the generic and the takeofff)f what these pilots consider to be the most important

rankings was 0.701, which indicates that the same infor—mformatlon for safe flight.

mation judged to be important during takeoff is also gen- Second, if the first dimension corresponds to the
erally seen as important in the generic phase of flight. Topilot's perception of overall information importance,
more fully investigate how the information elements then one could expect to find a high correlation between
were judged for importance, the ranked data were sub-the average rank of items in the generic condition (from
mitted to an MDPREF program for a spatial analysis. table 3) and their coordinate values along the first
These results are given for each condition in the follow- dimension. This was in fact the case, with a correlation of
ing sections. —0.94. Because of this high correlation and because
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Figure 6. Spatial solution and interpretation of set A ranking data for generic condition.

subjects were told to rank the information in terms of with figure 7, certain elements have shifted because of
perceived priority, the first dimensioX-@xis) appearsto  their particular importance for takeoff. This shift is most
be measuring an overall information importance factor. easily seen with the increasing importance of “Zero Fuel
Weight,” “N1 RPM Limit,” and “Current Stab Trim.”
Likewise, note that information relevant for in-flight
actions moves down in the first dimension (e.g., “Pre-

As noted, while the use of previously defined clus-
ters represents a useful method for interpreting MDPREF

spatial plots, it is also informative to analyze those Clus'dicted Fuel at Wavpoints” p . :
. ) i ypoints” and “Predicted/Estimated
ters that emerge with the MDPREF stimulus (:oordlnatesWind for Descent”). Finally, the full dimensionality of

as input d.atfa for the analysis. This analysis_ determines[he data can be exploited by noting, in a two-dimensional
whether s_|m|Iar cluster§ are derived from er'ltlrely.d|_ff_er- solution, information with high values on both dimen-
ent experimental techniques. If so, the relative prioritiza- sions will appear in the upper right hand quadrant of the

tion of classes of flight-deck information as revealed In4)|0t' In this case, those items particularly relevant for

the _clusters can be examined. In the present case, thr fkeoff shifted into the upper right quadrant of figure 7.
distinct clusters emerged that were essentially the SaM&pic shift is as expected, given the logic behind the
as those found in the set A cluster analyses of the similar-MDPREF analysis ’

ity proximity data. The primary difference is that one
large cluster emerged that encompassed the items previ- As in the generic condition, a cluster analysis was
ously appearing under the aviation and navigation performed on the coordinate data obtained from the
clusters. MDPREF analysis for the takeoff condition. This analy-
sis produced a somewhat different result from that
Takeoff condition.Two  principal components obtained in the generic condition. While the same num-
accounted for 63 percent of the variance. The spatial plotber of clusters emerged, items appearing within the clus-
is shown in figure 7. As in the generic condition, items ters were more diffuse. Examination of these clusters
showing high to moderate values along the first dimen-revealed that they might represent a straightforward
sion are again included in the aviation category. Naviga-prioritization of information required for safe takeoff
tion elements once again lie in the middle, while systems(analogous to a checklist) with one group containing the
administration items define the lower end. As before, most important information, another group containing
communications items have large values on the secondgecondary information, and a third group containing the
dimension. Note, however, that in comparing figure 6 least important information.
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Figure 7. Spatial solution and interpretation of set A ranking data for takeoff condition.

Multidimensional Preference Analysis of Set B

Rankings

There was relatively good agreement on the impor-
tance of this information, which is indicated by a correla-
tion of 0.811 between the two rankings. This correlation

The average rank of setB data are presented inindicates that information deemed to be important during

table 4.

Table 4. Average Rank of Set B Data for Generic and Takeoff

Conditions
Set B data Generic conditiofi  Takeoff conditign
Airspeed 1 2
BankAng 2 5
Alt 3 6.5
Actual EPR 4 3
Flight Path Angle 5 8
Target N1 6 1
EngFireCon 7 6.5
SpdRestriction 8 10
Sel Vertical Spd 9 9
LndRefSpd 10 17
Inc ATC Msgs 11 11
ILS Tuning Data 12 16
AThrottle Data 13 4
VOR Tuning Data 14 14
Plt Reqt/Msg 15 12
IRS Info Source 16 15
Predwind 17 19
Anti-Ice 18 13
OxyPressure 19 20
Inc Dispatch Msg 20 18
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takeoff is also seen as being important during the generic
phase of flight. As with the set A data, the subject rank-
ings were analyzed with MDPREF to more fully explore
the data structure. These results will be presented sepa-
rately for each of the two conditions in the following
sections.

Generic condition.Two components accounted for
57 percent of the variance. The spatial plot is shown in
figure 8. To aid with interpretation of the plot, high-level
descriptors for clusters obtained from the similarities
proximity data for set B (reported earlier in “Hierarchical
Clustering” section) are identified on the spatial plot.
Note that the aviation cluster captures the majority of
information elements with high values on the first dimen-
sion. Navigation and communications data show lower
values on this dimension, while the one systems adminis-
tration item (“Oxygen Pressure”) shows an extremely
low value. The second dimension is defined almost
exclusively at the high end by “Engine Fire Condition.”
Navigation elements occupy the lower end of this second
dimension. As with the set A data, the two dimensions
would again appear to represent a distinction between
information of primary and secondary importance. The
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Figure 8. Spatial solution and interpretation of Set B ranking data for generic condition.

correlation between the average rank in the generic conthe analysis of the takeoff condition with MDPREF,
dition for each information element and their coordinate within the aviation cluster, several information elements
values along the first dimension we3.98. shifted in perceived importance. Most notably, propul-
sion information (“Target N1,” “Engine Fire Condition,”
To more fully analyze these data, a cluster analysisand “Actual EPR”) moved toward the high end of the
was run on the stimulus coordinates from the MDPREF first dimension. Additionally, communication informa-
analysis. Four distinct clusters emerged. Interestingly,tion moved to the top of the second dimension.
this cluster analysis proved to be different from that
found for the raw similarity data. (See fig. 5.) Here, the To more fully analyze these data, a cluster analysis
clusters were less well defined, and in some cases, conwas run on the stimulus coordinates from the MDPREF
tained different information. These clusters may have analysis. Four distinct clusters again emerged. As in the
resulted from the nature of the primary task. Again, the generic condition for this data set, the clusters obtained
ranking may become synonymous with relative priority. here contain some analogous items leading to less well
defined categories. As before, this may be due to the par-
Takeoff condition. Two principal Components ac- ticular set of stimulus items and the task requirements.
counted for 70 percent of the variance. The spatial plot is
presented in figure 9. The clusters derived from the set B Discussion
raw proximities have again been identified on the plot.
As noted in the generic condition, the aviation cluster  In the MDPREF framework, the content of the first
contains the majority of items in the stimulus set and dimension is that which is most important to the subjects;
again exhibits high values on this first dimension. As While the second dimension represents the next most
before, navigational items lie along the middle of the important content that is not correlated with the first. To
dimension. The second dimension is defined at the highhame these dimensions on the spatial plot, an analysis is
end by communications information, while navigational hormally made of those items on the extremes of each
data occupies the other end. dimension of any groups of items clustering together that
share obvious similarities. Although a spatial plot is gen-
This particular data set produced interesting resultserated, there is no guarantee that a meaningful interpreta-
across the two contextual conditions. First, note that fortion will emerge for the dimensions.
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Figure 9. Spatial solution and interpretation of Set B ranking data for takeoff condition.

For both sets, functionally related flight-deck infor- ments for the systems administration cluster is almost
mation appears to be collocated in the MDPREF plots.certainly due to the experimental instructions. Recall that
This collocation is independently confirmed by the clus- subjects were told to consider all systems as operating
ters derived from the similarity data. Information ele- normally. In addition to this, those emergency items
ments in close proximity to one another on these spatialappearing in sets A and B would not seem particularly
plots (figs. 6 to 9) generally fell within the same four relevant for a takeoff emergency situation. Second, note
clusters (aviation, navigation, communication, and sys-that, for both sets, the first dimension in the context
tems administration) described earlier. These clusterdependent condition accounts for almost as much vari-
names have been placed in the spatial plots to indicateance by itself as the two dimensions in the context inde-
generally, where the individual elements composing pendent (generic) condition. One explanation for this
them are located. overwhelming difference in variance is that by providing

) ) ) a specific context in which to prioritize, the experimenter
~As discussed above, the first, or consensus dimenmpiicitly requires that the pilot give a ranked checklist
sion (X-axis) in these analyses, could simply be labeled ot that ‘information necessary for a safe takeoff. This

as a primary importance dimension. The second dimenyanking can most easily be captured in a single dimen-
sion might represent information considered to be of sec-gjg (from most to least important).

ondary importance. If interpreted as such, the relative

position _of ite_ms formirjg clusters directly_i_ndicates the Cognitive Processing of Information Among
information pilots consider to be most critical for safe Pilots

flight. This relative position of clusters in the MDPREF . ) )

plots is, perhaps, one of the more important aspects of  Of interest in the study presented herein was the
this analysis. Just as the information elements can beeXtent to which the cognitive processing of stimuli was
ranked along the MDPREF prioritization dimensions, so Similar among pilots. This similarity can be evaluated for

too can clusters of information, if the items within each Poth the cognitive representation pilots have for the
cluster share some logical similarity. information elements (as analyzed with the INDSCAL

methodology) and the prioritization of flight-deck infor-
Several additional issues emerge from these analy-mation (as analyzed with the MDPREF methodology).
ses. First, it is important to note that the relative lack of Results addressing each of these areas will be presented
importance assigned to the emergency information ele-separately.
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Figure 10. Subject plot for set A similarity ratings.

Individual Difference Scaling significant effect (F(2, 48) =15.0% < 0.01). In this
case, subjects showed higher weights on the first dimen-
fsion (flight function) than on either of the other two
dimensions. These higher weights were confirmed statis-
tically by using Bonferroni post hoc comparisons (see
Cliff 1987). While dimension 1 was significantly differ-

For the similarity judgments, INDSCAL provides a
subject weight space that indicates how salient each o
the dimensions extracted from the analysis is to an indi-
vidual subject. For dimensions interpretable as reflecting

cognitive processes, salience can be seen as equivalent (t-z%t from dimensions 2 and 3 (F(1, 24) = 1988 0.01

(he use of the dimensions. If & sublect 1s using &l AMeN-ang (1, 24) = 22.8%) < 0.01, respectively), no statisti
; quaiy, weignts giv ' ' cally significant difference was found between dimen-
should be about equal. If, however, one (or more) of the

dimensions is being used more than the others, ther3|on52and3(F(l, 24) = 4.387 0.05). Average subject

. i ‘?/veights for each dimension and associated standard devi-
should be a difference among the weights. Three'ations are shown in table 5.

dimensional plots for the sets A and B subject weight

spaces are shown in figures 10 and 11, respectively.
_ . o . Multidimensional Preference Analyses
The subject weights indicate that for set A, pilots

were using all dimensions about equally. For set B, they In an MDPREF analysis, preference of each subject
tended to use dimensions 2 and 3 (flight action and samfor the stimuli is indicated by a vector in the spatial plot.
ple rate) less than dimension 1 (flight function). These Projecting the stimulus points onto the vector would rep-
results were confirmed statistically by analyzing the resent the relative preference for the stimuli. Further-
INDSCAL subject weights in a one-way ANOVA, with more, the cosine of the angle subtended between a vector
each of the three dimensions representing a treatmenéand a dimension will provide the correlation of a sub-
level. For set A, there was no statistically significant dif- ject's preferences with that particular dimension. If the
ference among the three dimensions (F(2, 52) = 1.73,spatial dimensions for the group data are interpretable, as
p > 0.05). However, for set B, there was a statistically they frequently are, then differences among subjects in
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Figure 11. Subject plot for set B similarity ratings.

Table 5. Averages and Standard Deviation of Subject Weights for Sets A and B

Dimension 1 Dimension 2 Dimension 3
Standard Standard Standard
Set Mean deviation Mean deviation Mean deviation
A 0.295 0.075 0.333 0.107 0.354 0.122
B 0.433 0.121 0.338 0.094 0.271 0.107

their use of dimensions can be inferred by the location ofabscissa may best be thought of as a consensus dimen-
subject vectors within the space. sion, which reflects an average ranking by a subject of
information elements.

For the MDPREF information prioritization analy-
sis, substantial agreement existed among the subjects. piscussion
For each of the four solutions considered here, over
70 percent of the subject vectors fell betweeh @iove In examining the INDSCAL subject weights, differ-
and below the first dimension. This position indicates a ences between sets A and B in the relative use of dimen-
relatively high degree of agreement among subjectsions by pilots is not entirely clear. However, it is
responses. Figure 12 plots the set A data for the generigmportant to note that because the stimulus sets were
and takeoff conditions. In these plots, each subject is repconstructed by using random selection, the patrticular
resented as a point. Figure 13 shows the analogous dateombination of items in set B may have led to a situation
for the set B stimuli. One can readily observe that thewhere one dimension became more relevant, interpret-
spread of points is tightly arranged around the first able, or salient to the subjects. The anomalous results of
dimension for both experimental conditions. The sets A and B may be due to the vagaries of the stimuli
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Figure 12. Subject plots for set A ranking for generic and takeoff Figure 13. Subject plots for set B ranking for generic and takeoff
conditions. conditions.

selected for use. Furthermore, although the set B dimendimension in the earlier MDPREF analyses is reflected
sions were statistically significant from one another, the by the relatively tight spread of points around it in this
main effect accounted for 38.6 percent of the variance.analysis. These results, however, do underscore the
While this percentage is good, it is not overwhelming. potential usefulness of a second dimension, in that a
Finally, it perhaps should not be surprising that the flight good portion of subjects are using both dimensions.
function dimension tended to dominate the other two for
the setB results, given the typical pilot training that  Also worth noting is the consistent ratings of the four
emphasizes aviation, navigation, and communication.  jtems common to both data sets. Those items were
“Pilot-Initiated Request or Message,” “Predicted/
The MDPREF results confirm the earlier findings Estimated Wind for Descent,” “Selected Altitude,” and
that (1) pilots are in good agreement about the relative*Speed Restriction Data.” As can be seen in figures 2
priority of the information elements they were asked to and 3, these items appear in the solution space at
judge and (2) the high percentage of variance in the firstapproximately the same locations. This near identical
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location would indicate that the pilots used the samecontexts lends additional credence to the conditions
attributes when measuring information similarity and being separate processes.

that they ranked the common attributes consistently with
these attributes. Likewise, these terms were similarly
ranked in the prioritization task. This similarity is appar-
ent in their common placement and shift in the spatial . . , . -
plots from the MDPREF analyses. These findings againsage’ Selected Altitude,” and “Speed Restriction

underscore the utility of employing two separate data set@ata”) showed only_ minor changes across t_he _generic
for validation purposes. and the takeoff conditions, which can be seen in figures 6

and 7. The item which showed the largest shift was

“Predicted/Estimated Wind for Descent.” Here the infor-

mation moved toward the far left (lower perceived
One hypothesis of interest in the study reported importance) as would be expected_pecause it has little, if

herein was the potential for invariance of cognitive pro- @ny, relevance for the takeoff condition.

cessing dimensions in different conditions. Although _

takeoff was the specific condition selected here andConclusions

clearly differs from other conditions (such as climb,

d nt. and roach) in terms of the information and The experiment reported herein used psychometric
escent, and approach) in terms ot the information a scaling and cluster analyses to determine how pilots
the actions required, it is representative of other flight

mentally categorize and prioritize flight-deck informa-
performed at certain times and in a certain order The?[ion. The techniques used herein are particularly robust
same would hold true for any other selected flight in that they give subjects a great degree of freedom in

ndition responding. This freedom has a clear advantage over tra-
co on. ditional experimental designs in that subjects are allowed

By invariance it is meant that the underlying cogni- 0 provide data as they perceive the situation, without the

tive process that is used by the pilot in accomplishing theuSual constraints placed upon them in a typical experi-
task does not change as a function of the condition inmental task (e.g., only correct or incorrect responses). It
which it occurs. This is not to say that in the case of pri- Was hoped that this would afford the maximum opportu-
oritization the relative order of information cannot Nty for exploring how pilots process flight-deck infor-
change as a function of context, but rather that the undermation with a minimum of artificial restrictions.

lying process generating that order does not change A disadvantage to the methods used herein is that by
contextually. providing the subjects with this freedom, individual dif-
ferences among subjects may completely obscure the
overall results, which was an initial concern. As pointed
ut in the “Results” section, it did not prove to be a prob-
em. The results obtained for both the scaling and the
clustering analyses were remarkably similar, and while
ghere were some minor individual differences among
Subjects, the overall response patterns were quite similar.

It is also important to note that, of the four stimulus
elements common to both sets A and B, the relative loca-
tion of three of them (“Pilot-Initiated Request or Mes-

Cognitive Processes Across Different Contexts

If, as discussed earlier, the dimensions obtained from
the MDPREF analyses are representative of the pilot's
cognitive processing, then the same dimensions shoul
correlate closely across different conditions. Alterna-
tively, dimensions reflecting different cognitive pro-
cesses should still be expected to show less correlation
across different conditions. Different cognitive processes
should also show a dissociation within a given contextual
condition. However, because the MDPREF analysis cal-
culates principal components, and these are orthogonal, Results from the individual differences scaling anal-
the correlation between dimensions is, by definition, ysis (INDSCAL) revealed three dimensions along which
Zero. pilots categorized and prioritized flight-deck informa-
tion. These included (1) the flight function that the
information supports, (2) the perceived strategic and tac-
ical nature of the information (referred to herein as flight

ction), and (3) how frequently the pilot refers to the data

) ; i (referred to herein as the sample rate). These same three
ent dimensions between the generic and the takeoff CONGimensions were observed with different subjects and
ditions was-0.209. These results indicate that regardless yi¢orant stimulus sets, which lends support for their sta-

of the partlcular.qontext in which prioritization occurred, tistical stability.

the same cognitive processes (represented here by the

two dimensions) operated in a similar fashion. The fact These results provide important insight into those
that the different dimensions show less correlation acrosscognitive factors involved in a pilot's processing of

Cognitive Processing of Flight-Deck Information

This pattern of correlation was, in fact, observed in
the study reported herein. The average correlation for th
same dimensions between the generic and the takeo
conditions was 0.663. The average correlation for differ-
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flight-deck data and suggest additional information that the findings presented herein may help in understanding
may be collected when evaluating a new flight deck or what categories of information pilots consider to be

interface. Such information could be gathered by stan-important under nominal conditions. The current results
dardizing the obtained dimensions and treating them asshow that the relative priorities pilots assign to various

additional variables for early design analyses. As categories of information (for either generic or takeoff

described in appendix A, a variety of options for using conditions) are

these dimensions exist. 1 Aviation

Classification of Flight-Deck Information 2. Navigation

Cluster results support the existence of at least four 3. Communication
distinct categories of information. These categories 4 sSystems administration
include (1) aviation, (2) navigation, (3) communication, . _ _ . _ _
and (4) systems administration. These findings were  While this can provide a starting point for determin-

observed across two essentially different stimulus sets"g how pilots view the relative priorities of different
and with two groups of subjects. information at a global level, it should not be taken as an

absolute ordering of flight-deck information categories

Based on the research discussed in the “Back-because of the obvious effect context can have on the rel-
ground” section of the paper that demonstrates that infor-ative priority of information.
mation consistent with an individual's categorization
scheme is responded to quicker and more accurately, the  Pilot Cognition Across Contexts
results presented herein could have direct implications
for methods of presenting flight-deck information. Most
obvious is the possibility for separately displaying infor-

A central finding of the study presented herein, how-
ever, is that while the relative priorities of different infor-
mation within these observed categories. Such ng:)at;?{?v?a)rloggange, dgteepri?i?l:gg ﬁpont;he.nsf't;’;t'?.n’nthe
approach may lead to performance improvements by 9 P SSE€s ; ling how the information 1S

ordered are reasonably invariant with respect to context.

making the information cognitively consistent by pre- - =~ ) L7 : "
senting it according to the mental models the crew hasThls invariance was indicated by high positive correla-

for the information flow. While this presentation is done tions between the same MDPR.E'.: dlmen3|o_ns (Wh'c.h
for most displays on modern generation flight decks, presumably reflect the same or s_lmllar underlying cogni-
these results could have significant bearing on how infor-1Ve processes) and low correlations between the differ-

mation is presented on new displays where a variety o nt MDPREF d_|men5|or_1§ (which presumably reflect
information could be presented (such as an eIectronicOllfferent unqlerly!ng cognitive processes) across the two
library display). These issues will require further empiri- contextual situations.

cal analysis to determine precisely how such presenta- While the dimensions obtained from the MDPREF

tional issues may affect pilot performance. results address relative prioritization, particularly as it

relates to categories of information, further work needs

Relative Priority of Flight-Deck Information to be done to determine and quantify the particular

Categories components that these prioritization dimensions are
comprised.

The results of the MDPREF (multidimensional pref-
erence scaling) analyses provide insight into how pilots
prioritize categories of information. Although, as noted nasa Langley Research Center
in the “Background” section, most prioritization is cur- Hampton, VA 23681-0001
rently done with procedural and emergency checklists,June 13, 1995
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Appendix A ruption in performance? This question bears on a central
issue in multiple-task performance research—namely,
Example Application of INDSCAL Dimensions the extent to which different tasks may interfere, or con-
versely, facilitate each other.
The INDSCAL dimensions obtained in the experi-
ment discussed herein may also be used in a predictive |n the case described above, the issue of what
fashion for future applications. There are two possible resources tasks require for adequate performance
strategies for developing scales for research, each otmerges. First, the addition of a task from the same high-
which will be described below. Prior to this, however, it |evel category (e.g., an aviation task with an aviation
is useful to present the logical background for using thetask) may lead to superior performance, if it is assumed
INDSCAL dimensions for cognitive analyses. For the that the subject is primed for performing such a task
following example, refer to figure Al. because they are currently performing tasks from the
Consider a pilot's cognitive state at titieto be rep- same area. Alternatively, t.he addition of a task fr'om
resented at some point P1 in the three-dimensionalv.v'thm the same category might lead to an overload situa-
tion where performance actually declines because both

”?:c?tsncq::l_bzlztna:\ Séf:joivr\]/ r; Itr;g![g:lgleng\%i' :':i)(gneia(itrir\]/ﬁitle:ch; tasks could be assumed to require the same resources.
P y 9ag 9 y Both empirical questions require further analysis.

requires relatively frequent use of data. The pilot’s cog-
nitive state at this particular point in time has been repre-

sented in figure Al as P1. An analogous series of questions emerges when the

addition of tasks from outside the same category is con-
Assume now that a tactical aviation activity arises sidered. One question is, can a subject adequately time-
(such as a request from ATC to climb to a flight level of share two tasks from different functions (e.g., an aviation
35000 ft). The question becomes, can the pilot engagedask with a navigation task) if they may be presumed to
in the long-term navigation task effectively deal with this require different resources? Another question is, might
new task, or will imposition of the new task create a dis- the tasks interfere with one another?

frequent

® P

/ Sample

rate

infrequent

aviation A
strategic

navigation

Flight function Flight action

communication tactical

Figure Al. Hypothetical example of pilot's cognitive state using INDSCAL dimensions.
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This example illustrates how the INDSCAL dimen- (including display monitoring and MCDU interactions)
sions may be used for evaluating flight-deck designs.are explicitly spelled out through scenario development
Because the pilot may be represented at any point in thavith experienced pilots. If scale measures could be cali-
flight by three INDSCAL dimensions and these dimen- brated to identify high and low cognitive workload lev-
sions relate to the pilot's processing of flight-deck infor- els, such scale values could be used to estimate potential
mation, the issue of using the dimensions to determinecognitive over or underload situations.
whether subsequent tasks will be compatible with on-
going activities becomes quantifiable. Once appropriate.
validation has taken place, such scales could becom
extremely useful for flight-deck design. At least two pos-
sibilities for validation present themselves.

In a second method, these scales could be used
ointly. This approach would be the more difficult of the
wo. Here, instead of presenting a task by task estimate
along each scale, the task loads could be legitimately
combined mathematically and theoretically. This com-
bining would probably be best accomplished by using
conjoint measurement techniques (Louviere 1988). With
. this approach, the analyst would be able to examine the
the operator used to accomplish the task could be acCUgimensional scores for (1) a particular task or series

mulated on eagh of the three dimgnsions. Typically, t"’ISkthereof, (2) a defined mission segment (such as takeoff),
analyses examine the amount of time required to perform

a task and the total amount of time available for the givenand/Or (3) the entire mission.

period. While overload (the individual has too little time The above conditions suggest that the most logical
to perform too many actions) can be detected in such aapproach for using the derived INDSCAL dimensions is
situation, and represents a proxy for workload, little as scales for pilots to evaluate and rate flight-deck infor-
information is conveyed about the pilot’s cognitive pro- mation. Three INDSCAL dimensions (flight function,
cessing from this methodology. Dimensional information flight action, and sample rate) and their operational defi-
would provide, at a particular point in the timeline, a rat- nitions could be provided to pilots. Once becoming
ing for the pilot. The only requirement would be that the familiar with these scales, pilots could then rank a com-
analyst have knowledge of the flight-deck information plete list of flight-deck information (such as the list used
used by the pilot for a given task. Currently, this is not ato construct the data sets in the study presented herein)
problem because as part of any detailed task, the actionalong those three dimensions.

First, the dimensional scales could be part of a tradi-
tional task analysis, wherein a record of the information
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Appendix B 1.

Categorization and Prioritization

Questionnaire Il.

28

During the course of a flight you receive a variety of
different types of information. Can you provide a list

of general categories into which you place theseIV.
sources of flight deck information?

What factors would you consider to be of the most
importance for prioritizing flight deck information
and of the least importance?

Are there any types of flight deck information which
you would consider to have absolute levels of prior-
ity (that is, you would attend to these things over any
other information or, conversely, ignore)?

In normal flight, how do you go about prioritizing
information?
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